import ibis
import ibis.selectors as s
= True
ibis.options.interactive
= ibis.examples.penguins.fetch() t
Basic input/output
If you don’t have your own data, you can load example data from the ibis.examples
module:
Overview
Ibis is typically used with a backend that already contains tables, but can import and export data in various formats.
Data platforms
You can connect Ibis to any supported backend to read and write data in backend-native tables.
Code
= ibis.duckdb.connect("penguins.ddb")
con = con.create_table("penguins", t.to_pyarrow(), overwrite=True) t
= ibis.duckdb.connect("penguins.ddb")
con = con.table("penguins")
t 3) t.head(
- 1
- Connect to a backend.
- 2
- Load a table.
- 3
- Display the table.
┏━━━━━━━━━┳━━━━━━━━━━━┳━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━┳━━━━━━━┓ ┃ species ┃ island ┃ bill_length_mm ┃ bill_depth_mm ┃ flipper_length_mm ┃ body_mass_g ┃ sex ┃ year ┃ ┡━━━━━━━━━╇━━━━━━━━━━━╇━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━╇━━━━━━━┩ │ string │ string │ float64 │ float64 │ int64 │ int64 │ string │ int64 │ ├─────────┼───────────┼────────────────┼───────────────┼───────────────────┼─────────────┼────────┼───────┤ │ Adelie │ Torgersen │ 39.1 │ 18.7 │ 181 │ 3750 │ male │ 2007 │ │ Adelie │ Torgersen │ 39.5 │ 17.4 │ 186 │ 3800 │ female │ 2007 │ │ Adelie │ Torgersen │ 40.3 │ 18.0 │ 195 │ 3250 │ female │ 2007 │ └─────────┴───────────┴────────────────┴───────────────┴───────────────────┴─────────────┴────────┴───────┘
= (
grouped "species", "island"])
t.group_by([=ibis._.count())
.aggregate(count"count"))
.order_by(ibis.desc(
)"penguins_grouped", grouped.to_pyarrow(), overwrite=True) con.create_table(
- 1
- Create a lazily evaluated Ibis expression.
- 2
- Write to a table.
┏━━━━━━━━━━━┳━━━━━━━━━━━┳━━━━━━━┓ ┃ species ┃ island ┃ count ┃ ┡━━━━━━━━━━━╇━━━━━━━━━━━╇━━━━━━━┩ │ string │ string │ int64 │ ├───────────┼───────────┼───────┤ │ Gentoo │ Biscoe │ 124 │ │ Chinstrap │ Dream │ 68 │ │ Adelie │ Dream │ 56 │ │ Adelie │ Torgersen │ 52 │ │ Adelie │ Biscoe │ 44 │ └───────────┴───────────┴───────┘
File formats
Depending on the backend, you can read and write data in several file formats.
pip install 'ibis-framework[duckdb]'
"penguins.csv")
t.to_csv("penguins.csv").head(3) ibis.read_csv(
- 1
- Write the table to a CSV file. Dependent on backend.
- 2
- Read the CSV file into a table. Dependent on backend.
┏━━━━━━━━━┳━━━━━━━━━━━┳━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━┳━━━━━━━┓ ┃ species ┃ island ┃ bill_length_mm ┃ bill_depth_mm ┃ flipper_length_mm ┃ body_mass_g ┃ sex ┃ year ┃ ┡━━━━━━━━━╇━━━━━━━━━━━╇━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━╇━━━━━━━┩ │ string │ string │ float64 │ float64 │ int64 │ int64 │ string │ int64 │ ├─────────┼───────────┼────────────────┼───────────────┼───────────────────┼─────────────┼────────┼───────┤ │ Adelie │ Torgersen │ 39.1 │ 18.7 │ 181 │ 3750 │ male │ 2007 │ │ Adelie │ Torgersen │ 39.5 │ 17.4 │ 186 │ 3800 │ female │ 2007 │ │ Adelie │ Torgersen │ 40.3 │ 18.0 │ 195 │ 3250 │ female │ 2007 │ └─────────┴───────────┴────────────────┴───────────────┴───────────────────┴─────────────┴────────┴───────┘
pip install 'ibis-framework[duckdb,deltalake]'
"penguins.delta", mode="overwrite")
t.to_delta("penguins.delta").head(3) ibis.read_delta(
- 1
- Write the table to a Delta Lake table. Dependent on backend.
- 2
- Read the Delta Lake table into a table. Dependent on backend.
┏━━━━━━━━━┳━━━━━━━━━━━┳━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━┳━━━━━━━┓ ┃ species ┃ island ┃ bill_length_mm ┃ bill_depth_mm ┃ flipper_length_mm ┃ body_mass_g ┃ sex ┃ year ┃ ┡━━━━━━━━━╇━━━━━━━━━━━╇━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━╇━━━━━━━┩ │ string │ string │ float64 │ float64 │ int64 │ int64 │ string │ int64 │ ├─────────┼───────────┼────────────────┼───────────────┼───────────────────┼─────────────┼────────┼───────┤ │ Adelie │ Torgersen │ 39.1 │ 18.7 │ 181 │ 3750 │ male │ 2007 │ │ Adelie │ Torgersen │ 39.5 │ 17.4 │ 186 │ 3800 │ female │ 2007 │ │ Adelie │ Torgersen │ 40.3 │ 18.0 │ 195 │ 3250 │ female │ 2007 │ └─────────┴───────────┴────────────────┴───────────────┴───────────────────┴─────────────┴────────┴───────┘
pip install 'ibis-framework[duckdb]'
"penguins.parquet")
t.to_parquet("penguins.parquet").head(3) ibis.read_parquet(
- 1
- Write the table to a Parquet file. Dependent on backend.
- 2
- Read the Parquet file into a table. Dependent on backend.
┏━━━━━━━━━┳━━━━━━━━━━━┳━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━┳━━━━━━━┓ ┃ species ┃ island ┃ bill_length_mm ┃ bill_depth_mm ┃ flipper_length_mm ┃ body_mass_g ┃ sex ┃ year ┃ ┡━━━━━━━━━╇━━━━━━━━━━━╇━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━╇━━━━━━━┩ │ string │ string │ float64 │ float64 │ int64 │ int64 │ string │ int64 │ ├─────────┼───────────┼────────────────┼───────────────┼───────────────────┼─────────────┼────────┼───────┤ │ Adelie │ Torgersen │ 39.1 │ 18.7 │ 181 │ 3750 │ male │ 2007 │ │ Adelie │ Torgersen │ 39.5 │ 17.4 │ 186 │ 3800 │ female │ 2007 │ │ Adelie │ Torgersen │ 40.3 │ 18.0 │ 195 │ 3250 │ female │ 2007 │ └─────────┴───────────┴────────────────┴───────────────┴───────────────────┴─────────────┴────────┴───────┘
With other Python libraries
Ibis uses Apache Arrow for efficient data transfer to and from other libraries. Ibis tables implement the __dataframe__
and __array__
protocols, so you can pass them to any library that supports these protocols.
You can convert Ibis tables to pandas dataframes.
pip install pandas
= t.to_pandas()
df 3) df.head(
- 1
- Returns a pandas dataframe.
species | island | bill_length_mm | bill_depth_mm | flipper_length_mm | body_mass_g | sex | year | |
---|---|---|---|---|---|---|---|---|
0 | Adelie | Torgersen | 39.1 | 18.7 | 181.0 | 3750.0 | male | 2007 |
1 | Adelie | Torgersen | 39.5 | 17.4 | 186.0 | 3800.0 | female | 2007 |
2 | Adelie | Torgersen | 40.3 | 18.0 | 195.0 | 3250.0 | female | 2007 |
Or you can convert pandas dataframes to Ibis tables.
= ibis.memtable(df)
t 3) t.head(
- 1
- Returns an Ibis table.
┏━━━━━━━━━┳━━━━━━━━━━━┳━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━┳━━━━━━━┓ ┃ species ┃ island ┃ bill_length_mm ┃ bill_depth_mm ┃ flipper_length_mm ┃ body_mass_g ┃ sex ┃ year ┃ ┡━━━━━━━━━╇━━━━━━━━━━━╇━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━╇━━━━━━━┩ │ string │ string │ float64 │ float64 │ float64 │ float64 │ string │ int64 │ ├─────────┼───────────┼────────────────┼───────────────┼───────────────────┼─────────────┼────────┼───────┤ │ Adelie │ Torgersen │ 39.1 │ 18.7 │ 181.0 │ 3750.0 │ male │ 2007 │ │ Adelie │ Torgersen │ 39.5 │ 17.4 │ 186.0 │ 3800.0 │ female │ 2007 │ │ Adelie │ Torgersen │ 40.3 │ 18.0 │ 195.0 │ 3250.0 │ female │ 2007 │ └─────────┴───────────┴────────────────┴───────────────┴───────────────────┴─────────────┴────────┴───────┘
You can convert Ibis tables to Polars dataframes.
pip install polars
import polars as pl
= pl.from_arrow(t.to_pyarrow())
df 3) df.head(
species | island | bill_length_mm | bill_depth_mm | flipper_length_mm | body_mass_g | sex | year |
---|---|---|---|---|---|---|---|
str | str | f64 | f64 | f64 | f64 | str | i64 |
"Adelie" | "Torgersen" | 39.1 | 18.7 | 181.0 | 3750.0 | "male" | 2007 |
"Adelie" | "Torgersen" | 39.5 | 17.4 | 186.0 | 3800.0 | "female" | 2007 |
"Adelie" | "Torgersen" | 40.3 | 18.0 | 195.0 | 3250.0 | "female" | 2007 |
Or Polars dataframes to Ibis tables.
= ibis.memtable(df)
t 3) t.head(
┏━━━━━━━━━┳━━━━━━━━━━━┳━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━┳━━━━━━━┓ ┃ species ┃ island ┃ bill_length_mm ┃ bill_depth_mm ┃ flipper_length_mm ┃ body_mass_g ┃ sex ┃ year ┃ ┡━━━━━━━━━╇━━━━━━━━━━━╇━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━╇━━━━━━━┩ │ string │ string │ float64 │ float64 │ float64 │ float64 │ string │ int64 │ ├─────────┼───────────┼────────────────┼───────────────┼───────────────────┼─────────────┼────────┼───────┤ │ Adelie │ Torgersen │ 39.1 │ 18.7 │ 181.0 │ 3750.0 │ male │ 2007 │ │ Adelie │ Torgersen │ 39.5 │ 17.4 │ 186.0 │ 3800.0 │ female │ 2007 │ │ Adelie │ Torgersen │ 40.3 │ 18.0 │ 195.0 │ 3250.0 │ female │ 2007 │ └─────────┴───────────┴────────────────┴───────────────┴───────────────────┴─────────────┴────────┴───────┘
You can convert Ibis tables to PyArrow tables.
pip install pyarrow
t.to_pyarrow()
pyarrow.Table
species: string
island: string
bill_length_mm: double
bill_depth_mm: double
flipper_length_mm: double
body_mass_g: double
sex: string
year: int64
----
species: [["Adelie","Adelie","Adelie","Adelie","Adelie",...,"Chinstrap","Chinstrap","Chinstrap","Chinstrap","Chinstrap"]]
island: [["Torgersen","Torgersen","Torgersen","Torgersen","Torgersen",...,"Dream","Dream","Dream","Dream","Dream"]]
bill_length_mm: [[39.1,39.5,40.3,null,36.7,...,55.8,43.5,49.6,50.8,50.2]]
bill_depth_mm: [[18.7,17.4,18,null,19.3,...,19.8,18.1,18.2,19,18.7]]
flipper_length_mm: [[181,186,195,null,193,...,207,202,193,210,198]]
body_mass_g: [[3750,3800,3250,null,3450,...,4000,3400,3775,4100,3775]]
sex: [["male","female","female",null,"female",...,"male","female","male","male","female"]]
year: [[2007,2007,2007,2007,2007,...,2009,2009,2009,2009,2009]]
Or PyArrow batches:
t.to_pyarrow_batches()
<pyarrow.lib.RecordBatchReader at 0x7fff94da9110>
And you can convert PyArrow tables to Ibis tables.
3) ibis.memtable(t.to_pyarrow()).head(
┏━━━━━━━━━┳━━━━━━━━━━━┳━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━┳━━━━━━━┓ ┃ species ┃ island ┃ bill_length_mm ┃ bill_depth_mm ┃ flipper_length_mm ┃ body_mass_g ┃ sex ┃ year ┃ ┡━━━━━━━━━╇━━━━━━━━━━━╇━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━╇━━━━━━━┩ │ string │ string │ float64 │ float64 │ float64 │ float64 │ string │ int64 │ ├─────────┼───────────┼────────────────┼───────────────┼───────────────────┼─────────────┼────────┼───────┤ │ Adelie │ Torgersen │ 39.1 │ 18.7 │ 181.0 │ 3750.0 │ male │ 2007 │ │ Adelie │ Torgersen │ 39.5 │ 17.4 │ 186.0 │ 3800.0 │ female │ 2007 │ │ Adelie │ Torgersen │ 40.3 │ 18.0 │ 195.0 │ 3250.0 │ female │ 2007 │ └─────────┴───────────┴────────────────┴───────────────┴───────────────────┴─────────────┴────────┴───────┘
You can convert Ibis tables to torch tensors.
pip install torch
3).to_torch() t.select(s.numeric()).limit(
{'col2': tensor([39.1000, 39.5000, 40.3000], dtype=torch.float64),
'col3': tensor([18.7000, 17.4000, 18.0000], dtype=torch.float64),
'col4': tensor([181., 186., 195.], dtype=torch.float64),
'col5': tensor([3750., 3800., 3250.], dtype=torch.float64),
'col7': tensor([2007, 2007, 2007], dtype=torch.int16)}
You can directly call the __dataframe__
protocol on Ibis tables, though this is typically handled by the library you’re using.
t.__dataframe__()
<ibis.expr.types.dataframe_interchange.IbisDataFrame at 0x7fff31b34130>
You can directly call the __array__
protocol on Ibis tables, though this is typically handled by the library you’re using.
t.__array__()
array([['Adelie', 'Torgersen', 39.1, ..., 3750.0, 'male', 2007],
['Adelie', 'Torgersen', 39.5, ..., 3800.0, 'female', 2007],
['Adelie', 'Torgersen', 40.3, ..., 3250.0, 'female', 2007],
...,
['Chinstrap', 'Dream', 49.6, ..., 3775.0, 'male', 2009],
['Chinstrap', 'Dream', 50.8, ..., 4100.0, 'male', 2009],
['Chinstrap', 'Dream', 50.2, ..., 3775.0, 'female', 2009]],
dtype=object)