Amazon Athena
Install
Install Ibis and dependencies for the Athena backend:
Install with the athena
extra:
pip install 'ibis-framework[athena]'
And connect:
import ibis
= ibis.athena.connect(s3_staging_dir="s3://...") con
s3_staging_dir
argument must be provided.
This argument tells the underlying driver library–pyathena
–and ultimately Athena itself where to dump query results.
- Adjust other connection parameters as needed.
Install for Athena:
conda install -c conda-forge ibis-athena
import ibis
= ibis.athena.connect(s3_staging_dir="s3://...") con
s3_staging_dir
argument must be provided.
This argument tells the underlying driver library–pyathena
–and ultimately Athena itself where to dump query results.
- Adjust other connection parameters as needed.
Install for Athena:
mamba install -c conda-forge ibis-athena
import ibis
= ibis.athena.connect(s3_staging_dir="s3://my-bucket/") con
s3_staging_dir
argument must be provided.
This argument tells the underlying driver library–pyathena
–and ultimately Athena itself where to dump query results.
- Adjust other connection parameters as needed.
Connect
ibis.athena.connect
= ibis.athena.connect(
con ="s3://my-bucket/",
s3_staging_dir )
s3_staging_dir
argument must be provided.
This argument tells the underlying driver library–pyathena
–and ultimately Athena itself where to dump query results.
Connection Parameters
do_connect
do_connect(self, *, s3_staging_dir, cursor_class=ArrowCursor, memtable_volume=None, **config)
Create an Ibis client connected to an Amazon Athena instance.
athena.Backend
begin
begin(self)
compile
compile(self, expr, limit=None, params=None, pretty=False)
Compile an Ibis expression to a SQL string.
connect
connect(self, *args, **kwargs)
Connect to the database.
Parameters
Name | Type | Description | Default |
---|---|---|---|
*args | Mandatory connection parameters, see the docstring of do_connect for details. |
() |
|
**kwargs | Extra connection parameters, see the docstring of do_connect for details. |
{} |
Notes
This creates a new backend instance with saved args
and kwargs
, then calls reconnect
and finally returns the newly created and connected backend instance.
Returns
Name | Type | Description |
---|---|---|
BaseBackend | An instance of the backend |
create_database
create_database(self, name, catalog=None, force=False)
Create a database named name
in catalog
.
Parameters
Name | Type | Description | Default |
---|---|---|---|
name | str | Name of the database to create. | required |
catalog | str | None | Name of the catalog in which to create the database. If None , the current catalog is used. |
None |
force | bool | If False , an exception is raised if the database exists. |
False |
create_table
create_table(self, name, obj=None, *, schema=None, database=None, temp=False, overwrite=None, comment=None, properties=None, location=None, stored_as='PARQUET')
Create a table in Amazon Athena.
Parameters
Name | Type | Description | Default |
---|---|---|---|
name | str | Name of the table to create | required |
obj | ir.Table | pd.DataFrame | pa.Table | pl.DataFrame | pl.LazyFrame | None | The data with which to populate the table; optional, but one of obj or schema must be specified |
None |
schema | sch.SchemaLike | None | The schema of the table to create; optional, but one of obj or schema must be specified |
None |
database | str | None | The database to insert the table into. If not provided, the current database is used. You can provide a single database name, like "mydb" . For multi-level hierarchies, you can pass in a dotted string path like "catalog.database" or a tuple of strings like ("catalog", "database") . |
None |
temp | bool | This parameter is not yet supported in the Amazon Athena backend, because Amazon Athena doesn’t implement temporary tables | False |
overwrite | bool | None | If True , replace the table if it already exists, otherwise fail if the table exists |
None |
comment | str | None | Add a comment to the table | None |
properties | Mapping[str, Any] | None | Table properties to set on creation | None |
location | str | None | s3 location to store table data. Defaults to the s3_staging_dir bucket with the table name as the bucket key. |
None |
stored_as | str | The file format in which to store table data. Defaults to parquet. | 'PARQUET' |
create_view
create_view(self, name, obj, *, database=None, overwrite=False)
Create a new view from an expression.
Parameters
Name | Type | Description | Default |
---|---|---|---|
name | str | Name of the new view. | required |
obj | ir.Table | An Ibis table expression that will be used to create the view. | required |
database | str | None | Name of the database where the view will be created, if not provided the database’s default is used. | None |
overwrite | bool | Whether to clobber an existing view with the same name | False |
Returns
Name | Type | Description |
---|---|---|
Table | The view that was created. |
disconnect
disconnect(self)
Close the connection to the backend.
drop_database
drop_database(self, name, catalog=None, force=False)
Drop the database with name
in catalog
.
Parameters
Name | Type | Description | Default |
---|---|---|---|
name | str | Name of the schema to drop. | required |
catalog | str | None | Name of the catalog to drop the database from. If None , the current catalog is used. |
None |
force | bool | If False , an exception is raised if the database does not exist. |
False |
drop_table
drop_table(self, name, database=None, force=False)
Drop a table.
Parameters
Name | Type | Description | Default |
---|---|---|---|
name | str | Name of the table to drop. | required |
database | str | None | Name of the database where the table exists, if not the default. | None |
force | bool | If False , an exception is raised if the table does not exist. |
False |
drop_view
drop_view(self, name, *, database=None, force=False)
Drop a view.
Parameters
Name | Type | Description | Default |
---|---|---|---|
name | str | Name of the view to drop. | required |
database | str | None | Name of the database where the view exists, if not the default. | None |
force | bool | If False , an exception is raised if the view does not exist. |
False |
execute
execute(self, expr, params=None, limit='default', **kwargs)
Execute an expression.
from_connection
from_connection(cls, con, memtable_volume=None)
Create an Ibis client from an existing connection to an Amazon Athena instance.
Parameters
Name | Type | Description | Default |
---|---|---|---|
con | An existing connection to an Amazon Athena instance. | required | |
memtable_volume | str | None | The volume to use for Ibis memtables. | None |
get_schema
get_schema(self, table_name, *, catalog=None, database=None)
Compute the schema of a table
.
Parameters
Name | Type | Description | Default |
---|---|---|---|
table_name | str | May not be fully qualified. Use database if you want to qualify the identifier. |
required |
catalog | str | None | Catalog name | None |
database | str | None | Database name | None |
Returns
Name | Type | Description |
---|---|---|
sch.Schema | Ibis schema |
has_operation
has_operation(cls, operation)
Return whether the backend implements support for operation
.
Parameters
Name | Type | Description | Default |
---|---|---|---|
operation | type[ops.Value] | A class corresponding to an operation. | required |
Returns
Name | Type | Description |
---|---|---|
bool | Whether the backend implements the operation. |
Examples
>>> import ibis
>>> import ibis.expr.operations as ops
>>> ibis.sqlite.has_operation(ops.ArrayIndex)
False
>>> ibis.postgres.has_operation(ops.ArrayIndex)
True
insert
insert(self, table_name, obj, database=None, overwrite=False)
Insert data into a table.
schema
to refer to database hierarchy.
A collection of table
is referred to as a database
. A collection of database
is referred to as a catalog
.
These terms are mapped onto the corresponding features in each backend (where available), regardless of whether the backend itself uses the same terminology.
Parameters
Name | Type | Description | Default |
---|---|---|---|
table_name | str | The name of the table to which data needs will be inserted | required |
obj | pd.DataFrame | ir.Table | list | dict | The source data or expression to insert | required |
database | str | None | Name of the attached database that the table is located in. For backends that support multi-level table hierarchies, you can pass in a dotted string path like "catalog.database" or a tuple of strings like ("catalog", "database") . |
None |
overwrite | bool | If True then replace existing contents of table |
False |
list_catalogs
list_catalogs(self, like=None)
list_databases
list_databases(self, like=None, catalog=None)
List databases.
Parameters
Name | Type | Description | Default |
---|---|---|---|
like | str | None | Regular expression to use to match database names. | None |
catalog | str | None | Catalog in which to search for databases. | None |
Returns
Name | Type | Description |
---|---|---|
list[str] | A list of databases in catalog matching the pattern like . |
list_tables
list_tables(self, like=None, database=None)
List tables and views.
schema
to refer to database hierarchy.
A collection of tables is referred to as a database
. A collection of database
is referred to as a catalog
.
These terms are mapped onto the corresponding features in each backend (where available), regardless of whether the backend itself uses the same terminology.
Parameters
Name | Type | Description | Default |
---|---|---|---|
like | str | None | Regex to filter by table/view name. | None |
database | tuple[str, str] | str | None | Database location. If not passed, uses the current database. By default uses the current database (self.current_database ) and catalog (self.current_catalog ). To specify a table in a separate catalog, you can pass in the catalog and database as a string "catalog.database" , or as a tuple of strings ("catalog", "database") . |
None |
Returns
Name | Type | Description |
---|---|---|
list[str] | List of table and view names. |
Examples
>>> import ibis
>>> con = ibis.athena.connect()
>>> foo = con.create_table("foo", schema=ibis.schema(dict(a="int")))
>>> con.list_tables()
'foo']
[>>> bar = con.create_view("bar", foo)
>>> con.list_tables()
'bar', 'foo']
[>>> con.create_database("my_database")
>>> con.list_tables(database="my_database")
[]>>> con.raw_sql("CREATE TABLE my_database.baz (a INTEGER)")
<... object at 0x...>
>>> con.list_tables(database="my_database")
'baz'] [
raw_sql
raw_sql(self, query, **kwargs)
read_csv
read_csv(self, path, table_name=None, **kwargs)
Register a CSV file as a table in the current backend.
Parameters
Name | Type | Description | Default |
---|---|---|---|
path | str | Path | The data source. A string or Path to the CSV file. | required |
table_name | str | None | An optional name to use for the created table. This defaults to a sequentially generated name. | None |
**kwargs | Any | Additional keyword arguments passed to the backend loading function. | {} |
Returns
Name | Type | Description |
---|---|---|
ir.Table | The just-registered table |
read_delta
read_delta(self, source, table_name=None, **kwargs)
Register a Delta Lake table in the current database.
Parameters
Name | Type | Description | Default |
---|---|---|---|
source | str | Path | The data source. Must be a directory containing a Delta Lake table. | required |
table_name | str | None | An optional name to use for the created table. This defaults to a sequentially generated name. | None |
**kwargs | Any | Additional keyword arguments passed to the underlying backend or library. | {} |
Returns
Name | Type | Description |
---|---|---|
ir.Table | The just-registered table. |
read_json
read_json(self, path, table_name=None, **kwargs)
Register a JSON file as a table in the current backend.
Parameters
Name | Type | Description | Default |
---|---|---|---|
path | str | Path | The data source. A string or Path to the JSON file. | required |
table_name | str | None | An optional name to use for the created table. This defaults to a sequentially generated name. | None |
**kwargs | Any | Additional keyword arguments passed to the backend loading function. | {} |
Returns
Name | Type | Description |
---|---|---|
ir.Table | The just-registered table |
read_parquet
read_parquet(self, path, table_name=None, **kwargs)
Register a parquet file as a table in the current backend.
Parameters
Name | Type | Description | Default |
---|---|---|---|
path | str | Path | The data source. | required |
table_name | str | None | An optional name to use for the created table. This defaults to a sequentially generated name. | None |
**kwargs | Any | Additional keyword arguments passed to the backend loading function. | {} |
Returns
Name | Type | Description |
---|---|---|
ir.Table | The just-registered table |
reconnect
reconnect(self)
Reconnect to the database already configured with connect.
register_options
register_options(cls)
Register custom backend options.
rename_table
rename_table(self, old_name, new_name)
Rename an existing table.
Parameters
Name | Type | Description | Default |
---|---|---|---|
old_name | str | The old name of the table. | required |
new_name | str | The new name of the table. | required |
sql
sql(self, query, schema=None, dialect=None)
table
table(self, name, database=None)
Construct a table expression.
Parameters
Name | Type | Description | Default |
---|---|---|---|
name | str | Table name | required |
database | str | None | Database name | None |
Returns
Name | Type | Description |
---|---|---|
Table | Table expression |
to_csv
to_csv(self, expr, path, *, params=None, **kwargs)
Write the results of executing the given expression to a CSV file.
This method is eager and will execute the associated expression immediately.
Parameters
Name | Type | Description | Default |
---|---|---|---|
expr | ir.Table | The ibis expression to execute and persist to CSV. | required |
path | str | Path | The data source. A string or Path to the CSV file. | required |
params | Mapping[ir.Scalar, Any] | None | Mapping of scalar parameter expressions to value. | None |
kwargs | Any | Additional keyword arguments passed to pyarrow.csv.CSVWriter | {} |
https | required |
to_delta
to_delta(self, expr, path, *, params=None, **kwargs)
Write the results of executing the given expression to a Delta Lake table.
This method is eager and will execute the associated expression immediately.
Parameters
Name | Type | Description | Default |
---|---|---|---|
expr | ir.Table | The ibis expression to execute and persist to Delta Lake table. | required |
path | str | Path | The data source. A string or Path to the Delta Lake table. | required |
params | Mapping[ir.Scalar, Any] | None | Mapping of scalar parameter expressions to value. | None |
kwargs | Any | Additional keyword arguments passed to deltalake.writer.write_deltalake method | {} |
to_pandas
to_pandas(self, expr, *, params=None, limit=None, **kwargs)
Execute an Ibis expression and return a pandas DataFrame
, Series
, or scalar.
This method is a wrapper around execute
.
Parameters
Name | Type | Description | Default |
---|---|---|---|
expr | ir.Expr | Ibis expression to execute. | required |
params | Mapping[ir.Scalar, Any] | None | Mapping of scalar parameter expressions to value. | None |
limit | int | str | None | An integer to effect a specific row limit. A value of None means “no limit”. The default is in ibis/config.py . |
None |
kwargs | Any | Keyword arguments | {} |
to_pandas_batches
to_pandas_batches(self, expr, *, params=None, limit=None, chunk_size=1000000, **kwargs)
Execute an Ibis expression and return an iterator of pandas DataFrame
s.
Parameters
Name | Type | Description | Default |
---|---|---|---|
expr | ir.Expr | Ibis expression to execute. | required |
params | Mapping[ir.Scalar, Any] | None | Mapping of scalar parameter expressions to value. | None |
limit | int | str | None | An integer to effect a specific row limit. A value of None means “no limit”. The default is in ibis/config.py . |
None |
chunk_size | int | Maximum number of rows in each returned DataFrame batch. This may have no effect depending on the backend. |
1000000 |
kwargs | Any | Keyword arguments | {} |
Returns
Name | Type | Description |
---|---|---|
Iterator[pd.DataFrame] | An iterator of pandas DataFrame s. |
to_parquet
to_parquet(self, expr, path, *, params=None, **kwargs)
Write the results of executing the given expression to a parquet file.
This method is eager and will execute the associated expression immediately.
Parameters
Name | Type | Description | Default |
---|---|---|---|
expr | ir.Table | The ibis expression to execute and persist to parquet. | required |
path | str | Path | The data source. A string or Path to the parquet file. | required |
params | Mapping[ir.Scalar, Any] | None | Mapping of scalar parameter expressions to value. | None |
**kwargs | Any | Additional keyword arguments passed to pyarrow.parquet.ParquetWriter | {} |
https | required |
to_parquet_dir
to_parquet_dir(self, expr, directory, *, params=None, **kwargs)
Write the results of executing the given expression to a parquet file in a directory.
This method is eager and will execute the associated expression immediately.
Parameters
Name | Type | Description | Default |
---|---|---|---|
expr | ir.Table | The ibis expression to execute and persist to parquet. | required |
directory | str | Path | The data source. A string or Path to the directory where the parquet file will be written. | required |
params | Mapping[ir.Scalar, Any] | None | Mapping of scalar parameter expressions to value. | None |
**kwargs | Any | Additional keyword arguments passed to pyarrow.dataset.write_dataset | {} |
https | required |
to_polars
to_polars(self, expr, *, params=None, limit=None, **kwargs)
Execute expression and return results in as a polars DataFrame.
This method is eager and will execute the associated expression immediately.
Parameters
Name | Type | Description | Default |
---|---|---|---|
expr | ir.Expr | Ibis expression to export to polars. | required |
params | Mapping[ir.Scalar, Any] | None | Mapping of scalar parameter expressions to value. | None |
limit | int | str | None | An integer to effect a specific row limit. A value of None means “no limit”. The default is in ibis/config.py . |
None |
kwargs | Any | Keyword arguments | {} |
Returns
Name | Type | Description |
---|---|---|
dataframe | A polars DataFrame holding the results of the executed expression. |
to_pyarrow
to_pyarrow(self, expr, *, params=None, limit=None, **kwargs)
Execute expression and return results in as a pyarrow table.
This method is eager and will execute the associated expression immediately.
Parameters
Name | Type | Description | Default |
---|---|---|---|
expr | ir.Expr | Ibis expression to export to pyarrow | required |
params | Mapping[ir.Scalar, Any] | None | Mapping of scalar parameter expressions to value. | None |
limit | int | str | None | An integer to effect a specific row limit. A value of None means “no limit”. The default is in ibis/config.py . |
None |
kwargs | Any | Keyword arguments | {} |
Returns
Name | Type | Description |
---|---|---|
Table | A pyarrow table holding the results of the executed expression. |
to_pyarrow_batches
to_pyarrow_batches(self, expr, *, params=None, limit=None, **_)
Return a stream of record batches.
The returned RecordBatchReader
contains a cursor with an unbounded lifetime.
For analytics use cases this is usually nothing to fret about. In some cases you may need to explicit release the cursor.
Parameters
Name | Type | Description | Default |
---|---|---|---|
expr | ir.Expr | Ibis expression | required |
params | Mapping[ir.Scalar, Any] | None | Bound parameters | None |
limit | int | str | None | Limit the result to this number of rows | None |
to_torch
to_torch(self, expr, *, params=None, limit=None, **kwargs)
Execute an expression and return results as a dictionary of torch tensors.
Parameters
Name | Type | Description | Default |
---|---|---|---|
expr | ir.Expr | Ibis expression to execute. | required |
params | Mapping[ir.Scalar, Any] | None | Parameters to substitute into the expression. | None |
limit | int | str | None | An integer to effect a specific row limit. A value of None means no limit. |
None |
kwargs | Any | Keyword arguments passed into the backend’s to_torch implementation. |
{} |
Returns
Name | Type | Description |
---|---|---|
dict[str, torch.Tensor] | A dictionary of torch tensors, keyed by column name. |
truncate_table
truncate_table(self, name, database=None)
Delete all rows from a table.
schema
to refer to database hierarchy.
A collection of tables is referred to as a database
. A collection of database
is referred to as a catalog
. These terms are mapped onto the corresponding features in each backend (where available), regardless of whether the backend itself uses the same terminology.
Parameters
Name | Type | Description | Default |
---|---|---|---|
name | str | Table name | required |
database | str | None | Name of the attached database that the table is located in. For backends that support multi-level table hierarchies, you can pass in a dotted string path like "catalog.database" or a tuple of strings like ("catalog", "database") . |
None |