If you don’t have data to visualize, you can load an example table:
Code
import ibis
import ibis.selectors as s
ibis.options.interactive = True
t = ibis.examples.penguins.fetch()
t.head(3 )
┏━━━━━━━━━┳━━━━━━━━━━━┳━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━┳━━━━━━━┓
┃ species ┃ island ┃ bill_length_mm ┃ bill_depth_mm ┃ flipper_length_mm ┃ body_mass_g ┃ sex ┃ year ┃
┡━━━━━━━━━╇━━━━━━━━━━━╇━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━╇━━━━━━━┩
│ string │ string │ float64 │ float64 │ int64 │ int64 │ string │ int64 │
├─────────┼───────────┼────────────────┼───────────────┼───────────────────┼─────────────┼────────┼───────┤
│ Adelie │ Torgersen │ 39.1 │ 18.7 │ 181 │ 3750 │ male │ 2007 │
│ Adelie │ Torgersen │ 39.5 │ 17.4 │ 186 │ 3800 │ female │ 2007 │
│ Adelie │ Torgersen │ 40.3 │ 18.0 │ 195 │ 3250 │ female │ 2007 │
└─────────┴───────────┴────────────────┴───────────────┴───────────────────┴─────────────┴────────┴───────┘
Using matplotlib with Ibis
Refer to the matplotlib documentation . matplotlib has not implemented the dataframe interchange protocol so it is recommended to call to_pandas() on the Ibis table before plotting.
import matplotlib.pyplot as plt
grouped = t.group_by("species" ).aggregate(count= ibis._.count())
grouped = grouped.mutate(row_number= ibis.row_number().over()).select(
"row_number" ,
(
~ s.c("row_number" ) & s.all ()
), # see https://github.com/ibis-project/ibis/issues/6803
)
grouped
┏━━━━━━━━━━━━┳━━━━━━━━━━━┳━━━━━━━┓
┃ row_number ┃ species ┃ count ┃
┡━━━━━━━━━━━━╇━━━━━━━━━━━╇━━━━━━━┩
│ int64 │ string │ int64 │
├────────────┼───────────┼───────┤
│ 0 │ Adelie │ 152 │
│ 1 │ Chinstrap │ 68 │
│ 2 │ Gentoo │ 124 │
└────────────┴───────────┴───────┘
# https://stackoverflow.com/questions/9101497/matplotlib-bar-graph-x-axis-wont-plot-string-values
plt.figure(figsize= (6 , 4 ))
plt.bar(grouped["row_number" ].to_pandas(), grouped["count" ].to_pandas())
plt.title("Penguin species counts" )
plt.xlabel("Species" )
plt.xticks(grouped["row_number" ].to_pandas(), grouped["species" ].to_pandas())
plt.ylabel("Count" )
plt.show()
Back to top