PySpark
https://spark.apache.org/docs/latest/api/python

Install
Install Ibis and dependencies for the PySpark backend:
Install with the pyspark extra:
pip install 'ibis-framework[pyspark]'And connect:
import ibis
con = ibis.pyspark.connect()- 1
- Adjust connection parameters as needed.
Install for PySpark:
conda install -c conda-forge ibis-pysparkAnd connect:
import ibis
con = ibis.pyspark.connect()- 1
- Adjust connection parameters as needed.
Install for PySpark:
mamba install -c conda-forge ibis-pysparkAnd connect:
import ibis
con = ibis.pyspark.connect()- 1
- Adjust connection parameters as needed.
Connect
ibis.pyspark.connect
con = ibis.pyspark.connect(session=session)ibis.pyspark.connect is a thin wrapper around ibis.backends.pyspark.Backend.do_connect.
Connection Parameters
do_connect
do_connect(['self', 'session=None', "mode='batch'", '**kwargs'])
Create a PySpark Backend for use with Ibis.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| session | SparkSession | None | A SparkSession instance. |
None |
| mode | ConnectionMode | Can be either “batch” or “streaming”. If “batch”, every source, sink, and query executed within this connection will be interpreted as a batch workload. If “streaming”, every source, sink, and query executed within this connection will be interpreted as a streaming workload. | 'batch' |
| kwargs | Additional keyword arguments used to configure the SparkSession. | {} |
Examples
>>> import ibis
>>> from pyspark.sql import SparkSession
>>> session = SparkSession.builder.getOrCreate()
>>> ibis.pyspark.connect(session)
<ibis.backends.pyspark.Backend at 0x...>ibis.connect URL format
In addition to ibis.pyspark.connect, you can also connect to PySpark by passing a properly-formatted PySpark connection URL to ibis.connect:
con = ibis.connect(f"pyspark://{warehouse-dir}?spark.app.name=CountingSheep&spark.master=local[2]")pyspark.Backend
compile
compile(['self', 'expr', 'limit=None', 'params=None', 'pretty=False'])
Compile an Ibis expression to a SQL string.
compute_stats
compute_stats(['self', 'name', 'database=None', 'noscan=False'])
Issue a COMPUTE STATISTICS command for a given table.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| name | str | Table name | required |
| database | str | None | Database name | None |
| noscan | bool | If True, collect only basic statistics for the table (number of rows, size in bytes). |
False |
connect
connect(['self', '*args', '**kwargs'])
Connect to the database.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| *args | Mandatory connection parameters, see the docstring of do_connect for details. |
() |
|
| **kwargs | Extra connection parameters, see the docstring of do_connect for details. |
{} |
Notes
This creates a new backend instance with saved args and kwargs, then calls reconnect and finally returns the newly created and connected backend instance.
Returns
| Name | Type | Description |
|---|---|---|
| BaseBackend | An instance of the backend |
create_database
create_database(['self', 'name', '*', 'catalog=None', 'path=None', 'force=False'])
Create a new Spark database.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| name | str | Database name | required |
| catalog | str | None | Catalog to create database in (defaults to current_catalog) |
None |
| path | str | Path | None | Path where to store the database data; otherwise uses Spark default | None |
| force | bool | Whether to append IF NOT EXISTS to the database creation SQL |
False |
create_table
create_table(['self', 'name', 'obj=None', '*', 'schema=None', 'database=None', 'temp=None', 'overwrite=False', "format='parquet'"])
Create a new table in Spark.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| name | str | Name of the new table. | required |
| obj | ir.Table | pd.DataFrame | pa.Table | pl.DataFrame | pl.LazyFrame | None | If passed, creates table from SELECT statement results |
None |
| schema | sch.SchemaLike | None | Mutually exclusive with obj, creates an empty table with a schema |
None |
| database | str | None | Database name To specify a table in a separate catalog, you can pass in the catalog and database as a string "catalog.database", or as a tuple of strings ("catalog", "database"). |
None |
| temp | bool | None | Whether the new table is temporary (unsupported) | None |
| overwrite | bool | If True, overwrite existing data |
False |
| format | str | Format of the table on disk | 'parquet' |
Returns
| Name | Type | Description |
|---|---|---|
| Table | The newly created table. |
Examples
>>> con.create_table("new_table_name", table_expr) # quartodoc: +SKIPcreate_view
create_view(['self', 'name', 'obj', '*', 'database=None', 'overwrite=False'])
Create a temporary Spark view from a table expression.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| name | str | View name | required |
| obj | ir.Table | Expression to use for the view | required |
| database | str | None | Database name | None |
| overwrite | bool | Replace an existing view of the same name if it exists | False |
Returns
| Name | Type | Description |
|---|---|---|
| Table | The created view |
disconnect
disconnect(['self'])
Close the connection to the backend.
drop_database
drop_database(['self', 'name', '*', 'catalog=None', 'force=False'])
Drop a Spark database.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| name | str | Database name | required |
| catalog | str | None | Catalog containing database to drop (defaults to current_catalog) |
None |
| force | bool | If False, Spark throws exception if database is not empty or database does not exist | False |
drop_table
drop_table(['self', 'name', 'database=None', 'force=False'])
Drop a table.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| name | str | Name of the table to drop. | required |
| database | str | None | Name of the database where the table exists, if not the default. | None |
| force | bool | If False, an exception is raised if the table does not exist. |
False |
drop_view
drop_view(['self', 'name', '*', 'database=None', 'force=False'])
Drop a view.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| name | str | Name of the view to drop. | required |
| database | str | None | Name of the database where the view exists, if not the default. | None |
| force | bool | If False, an exception is raised if the view does not exist. |
False |
execute
execute(['self', 'expr', 'params=None', "limit='default'", '**kwargs'])
Execute an expression.
from_connection
from_connection(['cls', 'session', "mode='batch'", '**kwargs'])
Create a PySpark Backend from an existing SparkSession instance.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| session | SparkSession | A SparkSession instance. |
required |
| mode | ConnectionMode | Can be either “batch” or “streaming”. If “batch”, every source, sink, and query executed within this connection will be interpreted as a batch workload. If “streaming”, every source, sink, and query executed within this connection will be interpreted as a streaming workload. | 'batch' |
| kwargs | Additional keyword arguments used to configure the SparkSession. | {} |
get_schema
get_schema(['self', 'table_name', '*', 'catalog=None', 'database=None'])
Return a Schema object for the indicated table and database.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| table_name | str | Table name. May be fully qualified | required |
| catalog | str | None | Catalog to use | None |
| database | str | None | Database to use to get the active database. | None |
Returns
| Name | Type | Description |
|---|---|---|
| Schema | An ibis schema |
has_operation
has_operation(['cls', 'operation'])
Return whether the backend implements support for operation.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| operation | type[ops.Value] | A class corresponding to an operation. | required |
Returns
| Name | Type | Description |
|---|---|---|
| bool | Whether the backend implements the operation. |
Examples
>>> import ibis
>>> import ibis.expr.operations as ops
>>> ibis.sqlite.has_operation(ops.ArrayIndex)
False
>>> ibis.postgres.has_operation(ops.ArrayIndex)
Trueinsert
insert(['self', 'table_name', 'obj', 'database=None', 'overwrite=False'])
Insert data into a table.
schema to refer to database hierarchy.
A collection of table is referred to as a database. A collection of database is referred to as a catalog.
These terms are mapped onto the corresponding features in each backend (where available), regardless of whether the backend itself uses the same terminology.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| table_name | str | The name of the table to which data needs will be inserted | required |
| obj | pd.DataFrame | ir.Table | list | dict | The source data or expression to insert | required |
| database | str | None | Name of the attached database that the table is located in. For backends that support multi-level table hierarchies, you can pass in a dotted string path like "catalog.database" or a tuple of strings like ("catalog", "database"). |
None |
| overwrite | bool | If True then replace existing contents of table |
False |
list_catalogs
list_catalogs(['self', 'like=None'])
List existing catalogs in the current connection.
schema to refer to database hierarchy.
A collection of table is referred to as a database. A collection of database is referred to as a catalog.
These terms are mapped onto the corresponding features in each backend (where available), regardless of whether the backend itself uses the same terminology.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| like | str | None | A pattern in Python’s regex format to filter returned database names. | None |
Returns
| Name | Type | Description |
|---|---|---|
| list[str] | The catalog names that exist in the current connection, that match the like pattern if provided. |
list_databases
list_databases(['self', 'like=None', 'catalog=None'])
List existing databases in the current connection.
schema to refer to database hierarchy.
A collection of table is referred to as a database. A collection of database is referred to as a catalog.
These terms are mapped onto the corresponding features in each backend (where available), regardless of whether the backend itself uses the same terminology.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| like | str | None | A pattern in Python’s regex format to filter returned database names. | None |
| catalog | str | None | The catalog to list databases from. If None, the current catalog is searched. |
None |
Returns
| Name | Type | Description |
|---|---|---|
| list[str] | The database names that exist in the current connection, that match the like pattern if provided. |
list_tables
list_tables(['self', 'like=None', 'database=None'])
List the tables in the database.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| like | str | None | A pattern to use for listing tables. | None |
| database | str | None | Database to list tables from. Default behavior is to show tables in the current catalog and database. To specify a table in a separate catalog, you can pass in the catalog and database as a string "catalog.database", or as a tuple of strings ("catalog", "database"). |
None |
raw_sql
raw_sql(['self', 'query', '**kwargs'])
read_csv
read_csv(['self', 'source_list', 'table_name=None', '**kwargs'])
Register a CSV file as a table in the current database.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| source_list | str | list[str] | tuple[str] | The data source(s). May be a path to a file or directory of CSV files, or an iterable of CSV files. | required |
| table_name | str | None | An optional name to use for the created table. This defaults to a random generated name. | None |
| kwargs | Any | Additional keyword arguments passed to PySpark loading function. https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.DataFrameReader.csv.html | {} |
Returns
| Name | Type | Description |
|---|---|---|
| ir.Table | The just-registered table |
read_csv_dir
read_csv_dir(['self', 'path', 'table_name=None', 'watermark=None', '**kwargs'])
Register a CSV directory as a table in the current database.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| path | str | Path | The data source. | required |
| table_name | str | None | An optional name to use for the created table. This defaults to a random generated name. | None |
| watermark | Watermark | None | Watermark strategy for the table. | None |
| kwargs | Any | Additional keyword arguments passed to PySpark loading function. https://spark.apache.org/docs/latest/api/python/reference/pyspark.ss/api/pyspark.sql.streaming.DataStreamReader.csv.html | {} |
Returns
| Name | Type | Description |
|---|---|---|
| ir.Table | The just-registered table |
read_delta
read_delta(['self', 'path', 'table_name=None', '**kwargs'])
Register a Delta Lake table as a table in the current database.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| path | str | Path | The path to the Delta Lake table. | required |
| table_name | str | None | An optional name to use for the created table. This defaults to a random generated name. | None |
| kwargs | Any | Additional keyword arguments passed to PySpark. https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.DataFrameReader.load.html | {} |
Returns
| Name | Type | Description |
|---|---|---|
| ir.Table | The just-registered table |
read_json
read_json(['self', 'source_list', 'table_name=None', '**kwargs'])
Register a JSON file as a table in the current database.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| source_list | str | Sequence[str] | The data source(s). May be a path to a file or directory of JSON files, or an iterable of JSON files. | required |
| table_name | str | None | An optional name to use for the created table. This defaults to a random generated name. | None |
| kwargs | Any | Additional keyword arguments passed to PySpark loading function. https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.DataFrameReader.json.html | {} |
Returns
| Name | Type | Description |
|---|---|---|
| ir.Table | The just-registered table |
read_json_dir
read_json_dir(['self', 'path', 'table_name=None', 'watermark=None', '**kwargs'])
Register a JSON file as a table in the current database.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| path | str | Path | The data source. A directory of JSON files. | required |
| table_name | str | None | An optional name to use for the created table. This defaults to a random generated name. | None |
| watermark | Watermark | None | Watermark strategy for the table. | None |
| kwargs | Any | Additional keyword arguments passed to PySpark loading function. https://spark.apache.org/docs/latest/api/python/reference/pyspark.ss/api/pyspark.sql.streaming.DataStreamReader.json.html | {} |
Returns
| Name | Type | Description |
|---|---|---|
| ir.Table | The just-registered table |
read_kafka
read_kafka(['self', 'table_name=None', '*', 'watermark=None', 'auto_parse=False', 'schema=None', 'options=None'])
Register a Kafka topic as a table.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| table_name | str | None | An optional name to use for the created table. This defaults to a sequentially generated name. | None |
| watermark | Watermark | None | Watermark strategy for the table. | None |
| auto_parse | bool | Whether to parse Kafka messages automatically. If False, the source is read as binary keys and values. If True, the key is discarded and the value is parsed using the provided schema. |
False |
| schema | sch.Schema | None | Schema of the value of the Kafka messages. | None |
| options | Mapping[str, str] | None | Additional arguments passed to PySpark as .option(“key”, “value”). https://spark.apache.org/docs/latest/structured-streaming-kafka-integration.html | None |
Returns
| Name | Type | Description |
|---|---|---|
| ir.Table | The just-registered table |
read_parquet
read_parquet(['self', 'path', 'table_name=None', '**kwargs'])
Register a parquet file as a table in the current database.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| path | str | Path | The data source. May be a path to a file or directory of parquet files. | required |
| table_name | str | None | An optional name to use for the created table. This defaults to a random generated name. | None |
| kwargs | Any | Additional keyword arguments passed to PySpark. https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.DataFrameReader.parquet.html | {} |
Returns
| Name | Type | Description |
|---|---|---|
| ir.Table | The just-registered table |
read_parquet_dir
read_parquet_dir(['self', 'path', 'table_name=None', 'watermark=None', 'schema=None', '**kwargs'])
Register a parquet file as a table in the current database.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| path | str | Path | The data source. A directory of parquet files. | required |
| table_name | str | None | An optional name to use for the created table. This defaults to a random generated name. | None |
| watermark | Watermark | None | Watermark strategy for the table. | None |
| schema | sch.Schema | None | Schema of the parquet source. | None |
| kwargs | Any | Additional keyword arguments passed to PySpark. https://spark.apache.org/docs/latest/api/python/reference/pyspark.ss/api/pyspark.sql.streaming.DataStreamReader.parquet.html | {} |
Returns
| Name | Type | Description |
|---|---|---|
| ir.Table | The just-registered table |
reconnect
reconnect(['self'])
Reconnect to the database already configured with connect.
register
register(['self', 'source', 'table_name=None', '**kwargs'])
Register a data source as a table in the current database.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| source | str | Path | Any | The data source(s). May be a path to a file or directory of parquet/csv files, or an iterable of CSV files. | required |
| table_name | str | None | An optional name to use for the created table. This defaults to a random generated name. | None |
| **kwargs | Any | Additional keyword arguments passed to PySpark loading functions for CSV or parquet. | {} |
Returns
| Name | Type | Description |
|---|---|---|
| ir.Table | The just-registered table |
register_options
register_options(['cls'])
Register custom backend options.
rename_table
rename_table(['self', 'old_name', 'new_name'])
Rename an existing table.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| old_name | str | The old name of the table. | required |
| new_name | str | The new name of the table. | required |
sql
sql(['self', 'query', 'schema=None', 'dialect=None'])
table
table(['self', 'name', 'database=None'])
Construct a table expression.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| name | str | Table name | required |
| database | tuple[str, str] | str | None | Database name | None |
Returns
| Name | Type | Description |
|---|---|---|
| Table | Table expression |
to_csv
to_csv(['self', 'expr', 'path', '*', 'params=None', '**kwargs'])
Write the results of executing the given expression to a CSV file.
This method is eager and will execute the associated expression immediately.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| expr | ir.Table | The ibis expression to execute and persist to CSV. | required |
| path | str | Path | The data source. A string or Path to the CSV file. | required |
| params | Mapping[ir.Scalar, Any] | None | Mapping of scalar parameter expressions to value. | None |
| kwargs | Any | Additional keyword arguments passed to pyarrow.csv.CSVWriter | {} |
| https | required |
to_csv_dir
to_csv_dir(['self', 'expr', 'path', 'params=None', 'limit=None', 'options=None'])
Write the results of executing the given expression to a CSV directory.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| expr | ir.Expr | The ibis expression to execute and persist to CSV. | required |
| path | str | Path | The data source. A string or Path to the CSV directory. | required |
| params | Mapping[ir.Scalar, Any] | None | Mapping of scalar parameter expressions to value. | None |
| limit | int | str | None | An integer to effect a specific row limit. A value of None means “no limit”. The default is in ibis/config.py. |
None |
| options | Mapping[str, str] | None | Additional keyword arguments passed to pyspark.sql.streaming.DataStreamWriter | None |
Returns
| Name | Type | Description |
|---|---|---|
| StreamingQuery | None | Returns a Pyspark StreamingQuery object if in streaming mode, otherwise None |
to_delta
to_delta(['self', 'expr', 'path', 'params=None', 'limit=None', '**kwargs'])
Write the results of executing the given expression to a Delta Lake table.
This method is eager and will execute the associated expression immediately.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| expr | ir.Table | The ibis expression to execute and persist to a Delta Lake table. | required |
| path | str | Path | The data source. A string or Path to the Delta Lake table. | required |
| params | Mapping[ir.Scalar, Any] | None | Mapping of scalar parameter expressions to value. | None |
| limit | int | str | None | An integer to effect a specific row limit. A value of None means “no limit”. The default is in ibis/config.py. |
None |
| **kwargs | Any | Additional keyword arguments passed to pyspark.sql.DataFrameWriter. | {} |
to_kafka
to_kafka(['self', 'expr', '*', 'auto_format=False', 'options=None', 'params=None', "limit='default'"])
Write the results of executing the given expression to a Kafka topic.
This method does not return outputs. Streaming queries are run continuously in the background.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| expr | ir.Expr | The ibis expression to execute and persist to a Kafka topic. | required |
| auto_format | bool | Whether to format the Kafka messages before writing. If False, the output is written as-is. If True, the output is converted into JSON and written as the value of the Kafka messages. |
False |
| options | Mapping[str, str] | None | PySpark Kafka write arguments. https://spark.apache.org/docs/latest/structured-streaming-kafka-integration.html | None |
| params | Mapping | None | Mapping of scalar parameter expressions to value. | None |
| limit | str | None | An integer to effect a specific row limit. A value of None means “no limit”. The default is in ibis/config.py. |
'default' |
Returns
| Name | Type | Description |
|---|---|---|
| StreamingQuery | A Pyspark StreamingQuery object |
to_pandas
to_pandas(['self', 'expr', '*', 'params=None', 'limit=None', '**kwargs'])
Execute an Ibis expression and return a pandas DataFrame, Series, or scalar.
This method is a wrapper around execute.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| expr | ir.Expr | Ibis expression to execute. | required |
| params | Mapping[ir.Scalar, Any] | None | Mapping of scalar parameter expressions to value. | None |
| limit | int | str | None | An integer to effect a specific row limit. A value of None means “no limit”. The default is in ibis/config.py. |
None |
| kwargs | Any | Keyword arguments | {} |
to_pandas_batches
to_pandas_batches(['self', 'expr', '*', 'params=None', 'limit=None', 'chunk_size=1000000', '**kwargs'])
Execute an Ibis expression and return an iterator of pandas DataFrames.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| expr | ir.Expr | Ibis expression to execute. | required |
| params | Mapping[ir.Scalar, Any] | None | Mapping of scalar parameter expressions to value. | None |
| limit | int | str | None | An integer to effect a specific row limit. A value of None means “no limit”. The default is in ibis/config.py. |
None |
| chunk_size | int | Maximum number of rows in each returned DataFrame batch. This may have no effect depending on the backend. |
1000000 |
| kwargs | Any | Keyword arguments | {} |
Returns
| Name | Type | Description |
|---|---|---|
| Iterator[pd.DataFrame] | An iterator of pandas DataFrames. |
to_parquet
to_parquet(['self', 'expr', 'path', '*', 'params=None', '**kwargs'])
Write the results of executing the given expression to a parquet file.
This method is eager and will execute the associated expression immediately.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| expr | ir.Table | The ibis expression to execute and persist to parquet. | required |
| path | str | Path | The data source. A string or Path to the parquet file. | required |
| params | Mapping[ir.Scalar, Any] | None | Mapping of scalar parameter expressions to value. | None |
| **kwargs | Any | Additional keyword arguments passed to pyarrow.parquet.ParquetWriter | {} |
| https | required |
to_parquet_dir
to_parquet_dir(['self', 'expr', 'path', 'params=None', 'limit=None', 'options=None'])
Write the results of executing the given expression to a parquet directory.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| expr | ir.Expr | The ibis expression to execute and persist to parquet. | required |
| path | str | Path | The data source. A string or Path to the parquet directory. | required |
| params | Mapping[ir.Scalar, Any] | None | Mapping of scalar parameter expressions to value. | None |
| limit | int | str | None | An integer to effect a specific row limit. A value of None means “no limit”. The default is in ibis/config.py. |
None |
| options | Mapping[str, str] | None | Additional keyword arguments passed to pyspark.sql.streaming.DataStreamWriter | None |
Returns
| Name | Type | Description |
|---|---|---|
| StreamingQuery | None | Returns a Pyspark StreamingQuery object if in streaming mode, otherwise None |
to_polars
to_polars(['self', 'expr', '*', 'params=None', 'limit=None', '**kwargs'])
Execute expression and return results in as a polars DataFrame.
This method is eager and will execute the associated expression immediately.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| expr | ir.Expr | Ibis expression to export to polars. | required |
| params | Mapping[ir.Scalar, Any] | None | Mapping of scalar parameter expressions to value. | None |
| limit | int | str | None | An integer to effect a specific row limit. A value of None means “no limit”. The default is in ibis/config.py. |
None |
| kwargs | Any | Keyword arguments | {} |
Returns
| Name | Type | Description |
|---|---|---|
| dataframe | A polars DataFrame holding the results of the executed expression. |
to_pyarrow
to_pyarrow(['self', 'expr', 'params=None', 'limit=None', '**kwargs'])
Execute expression and return results in as a pyarrow table.
This method is eager and will execute the associated expression immediately.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| expr | ir.Expr | Ibis expression to export to pyarrow | required |
| params | Mapping[ir.Scalar, Any] | None | Mapping of scalar parameter expressions to value. | None |
| limit | int | str | None | An integer to effect a specific row limit. A value of None means “no limit”. The default is in ibis/config.py. |
None |
| kwargs | Any | Keyword arguments | {} |
Returns
| Name | Type | Description |
|---|---|---|
| Table | A pyarrow table holding the results of the executed expression. |
to_pyarrow_batches
to_pyarrow_batches(['self', 'expr', '*', 'params=None', 'limit=None', 'chunk_size=1000000', '**kwargs'])
Execute expression and return an iterator of pyarrow record batches.
This method is eager and will execute the associated expression immediately.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| expr | ir.Expr | Ibis expression to export to pyarrow | required |
| limit | int | str | None | An integer to effect a specific row limit. A value of None means “no limit”. The default is in ibis/config.py. |
None |
| params | Mapping[ir.Scalar, Any] | None | Mapping of scalar parameter expressions to value. | None |
| chunk_size | int | Maximum number of rows in each returned record batch. | 1000000 |
Returns
| Name | Type | Description |
|---|---|---|
| RecordBatchReader | Collection of pyarrow RecordBatchs. |
to_torch
to_torch(['self', 'expr', '*', 'params=None', 'limit=None', '**kwargs'])
Execute an expression and return results as a dictionary of torch tensors.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| expr | ir.Expr | Ibis expression to execute. | required |
| params | Mapping[ir.Scalar, Any] | None | Parameters to substitute into the expression. | None |
| limit | int | str | None | An integer to effect a specific row limit. A value of None means no limit. |
None |
| kwargs | Any | Keyword arguments passed into the backend’s to_torch implementation. |
{} |
Returns
| Name | Type | Description |
|---|---|---|
| dict[str, torch.Tensor] | A dictionary of torch tensors, keyed by column name. |
truncate_table
truncate_table(['self', 'name', 'database=None'])
Delete all rows from a table.
schema to refer to database hierarchy.
A collection of tables is referred to as a database. A collection of database is referred to as a catalog. These terms are mapped onto the corresponding features in each backend (where available), regardless of whether the backend itself uses the same terminology.
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
| name | str | Table name | required |
| database | str | None | Name of the attached database that the table is located in. For backends that support multi-level table hierarchies, you can pass in a dotted string path like "catalog.database" or a tuple of strings like ("catalog", "database"). |
None |