Before Ibis 5.0 it’s been challenging to concisely express whole-table operations with ibis. Happily this is no longer the case in ibis 5.0.
Let’s jump right in!
We’ll look at selectors examples using the palmerpenguins
data set with the DuckDB backend .
Setup
from ibis.interactive import *
t = ex.penguins.fetch()
t
┏━━━━━━━━━┳━━━━━━━━━━━┳━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━┳━━━━━━━┓
┃ species ┃ island ┃ bill_length_mm ┃ bill_depth_mm ┃ flipper_length_mm ┃ body_mass_g ┃ sex ┃ year ┃
┡━━━━━━━━━╇━━━━━━━━━━━╇━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━╇━━━━━━━┩
│ string │ string │ float64 │ float64 │ int64 │ int64 │ string │ int64 │
├─────────┼───────────┼────────────────┼───────────────┼───────────────────┼─────────────┼────────┼───────┤
│ Adelie │ Torgersen │ 39.1 │ 18.7 │ 181 │ 3750 │ male │ 2007 │
│ Adelie │ Torgersen │ 39.5 │ 17.4 │ 186 │ 3800 │ female │ 2007 │
│ Adelie │ Torgersen │ 40.3 │ 18.0 │ 195 │ 3250 │ female │ 2007 │
│ Adelie │ Torgersen │ NULL │ NULL │ NULL │ NULL │ NULL │ 2007 │
│ Adelie │ Torgersen │ 36.7 │ 19.3 │ 193 │ 3450 │ female │ 2007 │
│ Adelie │ Torgersen │ 39.3 │ 20.6 │ 190 │ 3650 │ male │ 2007 │
│ Adelie │ Torgersen │ 38.9 │ 17.8 │ 181 │ 3625 │ female │ 2007 │
│ Adelie │ Torgersen │ 39.2 │ 19.6 │ 195 │ 4675 │ male │ 2007 │
│ Adelie │ Torgersen │ 34.1 │ 18.1 │ 193 │ 3475 │ NULL │ 2007 │
│ Adelie │ Torgersen │ 42.0 │ 20.2 │ 190 │ 4250 │ NULL │ 2007 │
│ … │ … │ … │ … │ … │ … │ … │ … │
└─────────┴───────────┴────────────────┴───────────────┴───────────────────┴─────────────┴────────┴───────┘
Examples
Normalization
Let’s say you want to compute the z-score of every numeric column and replace the existing data with that normalized value. Here’s how you’d do that with selectors:
t.mutate(s.across(s.numeric(), (_ - _.mean()) / _.std()))
┏━━━━━━━━━┳━━━━━━━━━━━┳━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━┳━━━━━━━━━━━┓
┃ species ┃ island ┃ bill_length_mm ┃ bill_depth_mm ┃ flipper_length_mm ┃ body_mass_g ┃ sex ┃ year ┃
┡━━━━━━━━━╇━━━━━━━━━━━╇━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━╇━━━━━━━━━━━┩
│ string │ string │ float64 │ float64 │ float64 │ float64 │ string │ float64 │
├─────────┼───────────┼────────────────┼───────────────┼───────────────────┼─────────────┼────────┼───────────┤
│ Adelie │ Torgersen │ -0.883205 │ 0.784300 │ -1.416272 │ -0.563317 │ male │ -1.257484 │
│ Adelie │ Torgersen │ -0.809939 │ 0.126003 │ -1.060696 │ -0.500969 │ female │ -1.257484 │
│ Adelie │ Torgersen │ -0.663408 │ 0.429833 │ -0.420660 │ -1.186793 │ female │ -1.257484 │
│ Adelie │ Torgersen │ NULL │ NULL │ NULL │ NULL │ NULL │ -1.257484 │
│ Adelie │ Torgersen │ -1.322799 │ 1.088129 │ -0.562890 │ -0.937403 │ female │ -1.257484 │
│ Adelie │ Torgersen │ -0.846572 │ 1.746426 │ -0.776236 │ -0.688012 │ male │ -1.257484 │
│ Adelie │ Torgersen │ -0.919837 │ 0.328556 │ -1.416272 │ -0.719186 │ female │ -1.257484 │
│ Adelie │ Torgersen │ -0.864888 │ 1.240044 │ -0.420660 │ 0.590115 │ male │ -1.257484 │
│ Adelie │ Torgersen │ -1.799025 │ 0.480471 │ -0.562890 │ -0.906229 │ NULL │ -1.257484 │
│ Adelie │ Torgersen │ -0.352029 │ 1.543873 │ -0.776236 │ 0.060160 │ NULL │ -1.257484 │
│ … │ … │ … │ … │ … │ … │ … │ … │
└─────────┴───────────┴────────────────┴───────────────┴───────────────────┴─────────────┴────────┴───────────┘
What’s Up With the year
Column?
Whoops, looks like we included year
in our normalization because it’s an int64
column (and therefore numeric) but normalizing the year doesn’t make sense.
We can exclude year
from the normalization using another selector:
t.mutate(s.across(s.numeric() & ~ s.cols("year" ), (_ - _.mean()) / _.std()))
┏━━━━━━━━━┳━━━━━━━━━━━┳━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━┳━━━━━━━┓
┃ species ┃ island ┃ bill_length_mm ┃ bill_depth_mm ┃ flipper_length_mm ┃ body_mass_g ┃ sex ┃ year ┃
┡━━━━━━━━━╇━━━━━━━━━━━╇━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━╇━━━━━━━┩
│ string │ string │ float64 │ float64 │ float64 │ float64 │ string │ int64 │
├─────────┼───────────┼────────────────┼───────────────┼───────────────────┼─────────────┼────────┼───────┤
│ Adelie │ Torgersen │ -0.883205 │ 0.784300 │ -1.416272 │ -0.563317 │ male │ 2007 │
│ Adelie │ Torgersen │ -0.809939 │ 0.126003 │ -1.060696 │ -0.500969 │ female │ 2007 │
│ Adelie │ Torgersen │ -0.663408 │ 0.429833 │ -0.420660 │ -1.186793 │ female │ 2007 │
│ Adelie │ Torgersen │ NULL │ NULL │ NULL │ NULL │ NULL │ 2007 │
│ Adelie │ Torgersen │ -1.322799 │ 1.088129 │ -0.562890 │ -0.937403 │ female │ 2007 │
│ Adelie │ Torgersen │ -0.846572 │ 1.746426 │ -0.776236 │ -0.688012 │ male │ 2007 │
│ Adelie │ Torgersen │ -0.919837 │ 0.328556 │ -1.416272 │ -0.719186 │ female │ 2007 │
│ Adelie │ Torgersen │ -0.864888 │ 1.240044 │ -0.420660 │ 0.590115 │ male │ 2007 │
│ Adelie │ Torgersen │ -1.799025 │ 0.480471 │ -0.562890 │ -0.906229 │ NULL │ 2007 │
│ Adelie │ Torgersen │ -0.352029 │ 1.543873 │ -0.776236 │ 0.060160 │ NULL │ 2007 │
│ … │ … │ … │ … │ … │ … │ … │ … │
└─────────┴───────────┴────────────────┴───────────────┴───────────────────┴─────────────┴────────┴───────┘
cols
selects one or more columns, and the ~
means “negate”. Combining those we get “every column except for ‘year’”!
Pretty neat right?
Composable Group By
The power of this approach comes in when you want the grouped version. Perhaps we think some of these columns vary by species.
With selectors, all you need to do is slap a .group_by("species")
onto t
:
t.group_by("species" ).mutate(
s.across(s.numeric() & ~ s.cols("year" ), (_ - _.mean()) / _.std())
)
┏━━━━━━━━━┳━━━━━━━━┳━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━┳━━━━━━━┓
┃ species ┃ island ┃ bill_length_mm ┃ bill_depth_mm ┃ flipper_length_mm ┃ body_mass_g ┃ sex ┃ year ┃
┡━━━━━━━━━╇━━━━━━━━╇━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━╇━━━━━━━┩
│ string │ string │ float64 │ float64 │ float64 │ float64 │ string │ int64 │
├─────────┼────────┼────────────────┼───────────────┼───────────────────┼─────────────┼────────┼───────┤
│ Gentoo │ Biscoe │ -0.455854 │ -1.816223 │ -0.954050 │ -1.142626 │ female │ 2007 │
│ Gentoo │ Biscoe │ -0.975022 │ -0.287513 │ -0.491442 │ -0.448342 │ female │ 2009 │
│ Gentoo │ Biscoe │ 0.387793 │ -0.898997 │ -1.108253 │ -1.241809 │ female │ 2007 │
│ Gentoo │ Biscoe │ 0.809616 │ 0.222056 │ 0.125368 │ 1.237778 │ male │ 2007 │
│ Gentoo │ Biscoe │ 0.030865 │ -0.491341 │ -0.337240 │ 0.642677 │ male │ 2007 │
│ Gentoo │ Biscoe │ -0.326062 │ -1.510481 │ -1.108253 │ -1.043442 │ female │ 2007 │
│ Gentoo │ Biscoe │ -0.682990 │ -0.389427 │ -0.954050 │ -0.547525 │ female │ 2007 │
│ Gentoo │ Biscoe │ -0.261167 │ 0.323970 │ 0.279571 │ 0.245943 │ male │ 2007 │
│ Gentoo │ Biscoe │ -1.364397 │ -1.612395 │ -1.262455 │ -1.340993 │ female │ 2007 │
│ Gentoo │ Biscoe │ -0.228719 │ 0.425884 │ -0.337240 │ 0.146759 │ male │ 2007 │
│ … │ … │ … │ … │ … │ … │ … │ … │
└─────────┴────────┴────────────────┴───────────────┴───────────────────┴─────────────┴────────┴───────┘
Since ibis translates this into a run-of-the-mill selection as if you had called select
or mutate
without selectors, nothing special is needed for a backend to work with these new constructs.
Let’s look at some more examples.
Min-max Normalization
Grouped min/max normalization? Easy:
t.group_by("species" ).mutate(
s.across(s.numeric() & ~ s.cols("year" ), (_ - _.min ()) / (_.max () - _.min ()))
)
┏━━━━━━━━━┳━━━━━━━━┳━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━┳━━━━━━━┓
┃ species ┃ island ┃ bill_length_mm ┃ bill_depth_mm ┃ flipper_length_mm ┃ body_mass_g ┃ sex ┃ year ┃
┡━━━━━━━━━╇━━━━━━━━╇━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━╇━━━━━━━┩
│ string │ string │ float64 │ float64 │ float64 │ float64 │ string │ int64 │
├─────────┼────────┼────────────────┼───────────────┼───────────────────┼─────────────┼────────┼───────┤
│ Gentoo │ Biscoe │ 0.278075 │ 0.023810 │ 0.285714 │ 0.234043 │ female │ 2007 │
│ Gentoo │ Biscoe │ 0.192513 │ 0.380952 │ 0.392857 │ 0.382979 │ female │ 2009 │
│ Gentoo │ Biscoe │ 0.417112 │ 0.238095 │ 0.250000 │ 0.212766 │ female │ 2007 │
│ Gentoo │ Biscoe │ 0.486631 │ 0.500000 │ 0.535714 │ 0.744681 │ male │ 2007 │
│ Gentoo │ Biscoe │ 0.358289 │ 0.333333 │ 0.428571 │ 0.617021 │ male │ 2007 │
│ Gentoo │ Biscoe │ 0.299465 │ 0.095238 │ 0.250000 │ 0.255319 │ female │ 2007 │
│ Gentoo │ Biscoe │ 0.240642 │ 0.357143 │ 0.285714 │ 0.361702 │ female │ 2007 │
│ Gentoo │ Biscoe │ 0.310160 │ 0.523810 │ 0.571429 │ 0.531915 │ male │ 2007 │
│ Gentoo │ Biscoe │ 0.128342 │ 0.071429 │ 0.214286 │ 0.191489 │ female │ 2007 │
│ Gentoo │ Biscoe │ 0.315508 │ 0.547619 │ 0.428571 │ 0.510638 │ male │ 2007 │
│ … │ … │ … │ … │ … │ … │ … │ … │
└─────────┴────────┴────────────────┴───────────────┴───────────────────┴─────────────┴────────┴───────┘
Casting and Munging
How about casting every column whose name ends with any of the strings "mm"
or "g"
to a float32
? No problem!
t.mutate(s.across(s.endswith(("mm" , "g" )), _.cast("float32" )))
┏━━━━━━━━━┳━━━━━━━━━━━┳━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━┳━━━━━━━┓
┃ species ┃ island ┃ bill_length_mm ┃ bill_depth_mm ┃ flipper_length_mm ┃ body_mass_g ┃ sex ┃ year ┃
┡━━━━━━━━━╇━━━━━━━━━━━╇━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━╇━━━━━━━┩
│ string │ string │ float32 │ float32 │ float32 │ float32 │ string │ int64 │
├─────────┼───────────┼────────────────┼───────────────┼───────────────────┼─────────────┼────────┼───────┤
│ Adelie │ Torgersen │ 39.099998 │ 18.700001 │ 181.0 │ 3750.0 │ male │ 2007 │
│ Adelie │ Torgersen │ 39.500000 │ 17.400000 │ 186.0 │ 3800.0 │ female │ 2007 │
│ Adelie │ Torgersen │ 40.299999 │ 18.000000 │ 195.0 │ 3250.0 │ female │ 2007 │
│ Adelie │ Torgersen │ NULL │ NULL │ NULL │ NULL │ NULL │ 2007 │
│ Adelie │ Torgersen │ 36.700001 │ 19.299999 │ 193.0 │ 3450.0 │ female │ 2007 │
│ Adelie │ Torgersen │ 39.299999 │ 20.600000 │ 190.0 │ 3650.0 │ male │ 2007 │
│ Adelie │ Torgersen │ 38.900002 │ 17.799999 │ 181.0 │ 3625.0 │ female │ 2007 │
│ Adelie │ Torgersen │ 39.200001 │ 19.600000 │ 195.0 │ 4675.0 │ male │ 2007 │
│ Adelie │ Torgersen │ 34.099998 │ 18.100000 │ 193.0 │ 3475.0 │ NULL │ 2007 │
│ Adelie │ Torgersen │ 42.000000 │ 20.200001 │ 190.0 │ 4250.0 │ NULL │ 2007 │
│ … │ … │ … │ … │ … │ … │ … │ … │
└─────────┴───────────┴────────────────┴───────────────┴───────────────────┴─────────────┴────────┴───────┘
We can make all string columns have the same case too!
t.mutate(s.across(s.of_type("string" ), _.lower()))
┏━━━━━━━━━┳━━━━━━━━━━━┳━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━┳━━━━━━━┓
┃ species ┃ island ┃ bill_length_mm ┃ bill_depth_mm ┃ flipper_length_mm ┃ body_mass_g ┃ sex ┃ year ┃
┡━━━━━━━━━╇━━━━━━━━━━━╇━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━╇━━━━━━━┩
│ string │ string │ float64 │ float64 │ int64 │ int64 │ string │ int64 │
├─────────┼───────────┼────────────────┼───────────────┼───────────────────┼─────────────┼────────┼───────┤
│ adelie │ torgersen │ 39.1 │ 18.7 │ 181 │ 3750 │ male │ 2007 │
│ adelie │ torgersen │ 39.5 │ 17.4 │ 186 │ 3800 │ female │ 2007 │
│ adelie │ torgersen │ 40.3 │ 18.0 │ 195 │ 3250 │ female │ 2007 │
│ adelie │ torgersen │ NULL │ NULL │ NULL │ NULL │ NULL │ 2007 │
│ adelie │ torgersen │ 36.7 │ 19.3 │ 193 │ 3450 │ female │ 2007 │
│ adelie │ torgersen │ 39.3 │ 20.6 │ 190 │ 3650 │ male │ 2007 │
│ adelie │ torgersen │ 38.9 │ 17.8 │ 181 │ 3625 │ female │ 2007 │
│ adelie │ torgersen │ 39.2 │ 19.6 │ 195 │ 4675 │ male │ 2007 │
│ adelie │ torgersen │ 34.1 │ 18.1 │ 193 │ 3475 │ NULL │ 2007 │
│ adelie │ torgersen │ 42.0 │ 20.2 │ 190 │ 4250 │ NULL │ 2007 │
│ … │ … │ … │ … │ … │ … │ … │ … │
└─────────┴───────────┴────────────────┴───────────────┴───────────────────┴─────────────┴────────┴───────┘
Multiple Computations per Column
What if I want to compute multiple things? Heck yeah!
t.group_by("sex" ).mutate(
s.across(
s.numeric() & ~ s.cols("year" ),
dict (centered= _ - _.mean(), zscore= (_ - _.mean()) / _.std()),
)
).select("sex" , s.endswith(("_centered" , "_zscore" )))
┏━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━┓
┃ sex ┃ bill_length_mm_centered ┃ bill_depth_mm_centered ┃ flipper_length_mm_centered ┃ body_mass_g_centered ┃ bill_length_mm_zscore ┃ bill_depth_mm_zscore ┃ flipper_length_mm_zscore ┃ body_mass_g_zscore ┃
┡━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━┩
│ string │ float64 │ float64 │ float64 │ float64 │ float64 │ float64 │ float64 │ float64 │
├────────┼─────────────────────────┼────────────────────────┼────────────────────────────┼──────────────────────┼───────────────────────┼──────────────────────┼──────────────────────────┼────────────────────┤
│ male │ 0.445238 │ -2.091071 │ 10.494048 │ 504.315476 │ 0.082960 │ -1.122210 │ 0.721346 │ 0.640296 │
│ male │ 2.245238 │ -2.791071 │ 4.494048 │ 954.315476 │ 0.418349 │ -1.497878 │ 0.308914 │ 1.211631 │
│ male │ -6.254762 │ 0.208929 │ -18.505952 │ -95.684524 │ -1.165434 │ 0.112125 │ -1.272072 │ -0.121484 │
│ male │ -5.054762 │ 1.008929 │ 3.494048 │ -245.684524 │ -0.941841 │ 0.541459 │ 0.240176 │ -0.311929 │
│ male │ -11.254762 │ 3.208929 │ -6.505952 │ -145.684524 │ -2.097071 │ 1.722128 │ -0.447210 │ -0.184966 │
│ male │ -3.354762 │ 2.808929 │ -7.505952 │ -45.684524 │ -0.625084 │ 1.507461 │ -0.515948 │ -0.058003 │
│ male │ 0.145238 │ 3.608929 │ -10.505952 │ -345.684524 │ 0.027062 │ 1.936795 │ -0.722164 │ -0.438893 │
│ male │ -8.154762 │ 0.808929 │ -24.505952 │ -945.684524 │ -1.519456 │ 0.434126 │ -1.684504 │ -1.200673 │
│ male │ -7.654762 │ 0.208929 │ -19.505952 │ -595.684524 │ -1.426292 │ 0.112125 │ -1.340811 │ -0.756301 │
│ male │ -7.054762 │ -0.691071 │ -24.505952 │ -745.684524 │ -1.314496 │ -0.370876 │ -1.684504 │ -0.946746 │
│ … │ … │ … │ … │ … │ … │ … │ … │ … │
└────────┴─────────────────────────┴────────────────────────┴────────────────────────────┴──────────────────────┴───────────────────────┴──────────────────────┴──────────────────────────┴────────────────────┘
Don’t like the naming convention?
Pass a function to make your own name!
t.select(s.startswith("bill" )).mutate(
s.across(
s.all (),
dict (x= _ - _.mean(), y= _.max ()),
names= lambda col, fn: f" { col} _ { fn} _improved" ,
)
)
┏━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━┓
┃ bill_length_mm ┃ bill_depth_mm ┃ bill_length_mm_x_improved ┃ bill_depth_mm_x_improved ┃ bill_length_mm_y_improved ┃ bill_depth_mm_y_improved ┃
┡━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━┩
│ float64 │ float64 │ float64 │ float64 │ float64 │ float64 │
├────────────────┼───────────────┼───────────────────────────┼──────────────────────────┼───────────────────────────┼──────────────────────────┤
│ 39.1 │ 18.7 │ -4.82193 │ 1.54883 │ 59.6 │ 21.5 │
│ 39.5 │ 17.4 │ -4.42193 │ 0.24883 │ 59.6 │ 21.5 │
│ 40.3 │ 18.0 │ -3.62193 │ 0.84883 │ 59.6 │ 21.5 │
│ NULL │ NULL │ NULL │ NULL │ 59.6 │ 21.5 │
│ 36.7 │ 19.3 │ -7.22193 │ 2.14883 │ 59.6 │ 21.5 │
│ 39.3 │ 20.6 │ -4.62193 │ 3.44883 │ 59.6 │ 21.5 │
│ 38.9 │ 17.8 │ -5.02193 │ 0.64883 │ 59.6 │ 21.5 │
│ 39.2 │ 19.6 │ -4.72193 │ 2.44883 │ 59.6 │ 21.5 │
│ 34.1 │ 18.1 │ -9.82193 │ 0.94883 │ 59.6 │ 21.5 │
│ 42.0 │ 20.2 │ -1.92193 │ 3.04883 │ 59.6 │ 21.5 │
│ … │ … │ … │ … │ … │ … │
└────────────────┴───────────────┴───────────────────────────┴──────────────────────────┴───────────────────────────┴──────────────────────────┘
Don’t like lambda functions? We support a format string too!
t.select(s.startswith("bill" )).mutate(
s.across(
s.all (),
func= dict (x= _ - _.mean(), y= _.max ()),
names= " {col} _ {fn} _improved" ,
)
).head(2 )
┏━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━┓
┃ bill_length_mm ┃ bill_depth_mm ┃ bill_length_mm_x_improved ┃ bill_depth_mm_x_improved ┃ bill_length_mm_y_improved ┃ bill_depth_mm_y_improved ┃
┡━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━┩
│ float64 │ float64 │ float64 │ float64 │ float64 │ float64 │
├────────────────┼───────────────┼───────────────────────────┼──────────────────────────┼───────────────────────────┼──────────────────────────┤
│ 39.1 │ 18.7 │ -4.82193 │ 1.54883 │ 59.6 │ 21.5 │
│ 39.5 │ 17.4 │ -4.42193 │ 0.24883 │ 59.6 │ 21.5 │
└────────────────┴───────────────┴───────────────────────────┴──────────────────────────┴───────────────────────────┴──────────────────────────┘
Working with other Ibis APIs
We’ve seen lots of mutate use, but selectors also work with .agg
:
t.group_by("year" ).agg(s.across(s.numeric() & ~ s.cols("year" ), _.mean())).order_by("year" )
┏━━━━━━━┳━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━┓
┃ year ┃ bill_length_mm ┃ bill_depth_mm ┃ flipper_length_mm ┃ body_mass_g ┃
┡━━━━━━━╇━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━┩
│ int64 │ float64 │ float64 │ float64 │ float64 │
├───────┼────────────────┼───────────────┼───────────────────┼─────────────┤
│ 2007 │ 43.740367 │ 17.427523 │ 196.880734 │ 4124.541284 │
│ 2008 │ 43.541228 │ 16.914035 │ 202.798246 │ 4266.666667 │
│ 2009 │ 44.452941 │ 17.125210 │ 202.806723 │ 4210.294118 │
└───────┴────────────────┴───────────────┴───────────────────┴─────────────┘
Naturally, selectors work in grouping keys too, for even more convenience:
t.group_by(~ s.numeric() | s.cols("year" )).mutate(
s.across(s.numeric() & ~ s.cols("year" ), dict (centered= _ - _.mean(), std= _.std()))
).select("species" , s.endswith(("_centered" , "_std" )))
┏━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓
┃ species ┃ bill_length_mm_centered ┃ bill_depth_mm_centered ┃ flipper_length_mm_centered ┃ body_mass_g_centered ┃ bill_length_mm_std ┃ bill_depth_mm_std ┃ flipper_length_mm_std ┃ body_mass_g_std ┃
┡━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩
│ string │ float64 │ float64 │ float64 │ float64 │ float64 │ float64 │ float64 │ float64 │
├─────────┼─────────────────────────┼────────────────────────┼────────────────────────────┼──────────────────────┼────────────────────┼───────────────────┼───────────────────────┼─────────────────┤
│ Adelie │ -3.18 │ -1.33 │ -10.6 │ -202.5 │ 1.927462 │ 1.060451 │ 6.310485 │ 372.015905 │
│ Adelie │ 0.52 │ -0.53 │ -4.6 │ -202.5 │ 1.927462 │ 1.060451 │ 6.310485 │ 372.015905 │
│ Adelie │ -1.18 │ 1.67 │ 7.4 │ 47.5 │ 1.927462 │ 1.060451 │ 6.310485 │ 372.015905 │
│ Adelie │ -1.58 │ 0.57 │ 1.4 │ -152.5 │ 1.927462 │ 1.060451 │ 6.310485 │ 372.015905 │
│ Adelie │ -0.58 │ -0.33 │ -4.6 │ 547.5 │ 1.927462 │ 1.060451 │ 6.310485 │ 372.015905 │
│ Adelie │ 0.42 │ -1.03 │ 6.4 │ -202.5 │ 1.927462 │ 1.060451 │ 6.310485 │ 372.015905 │
│ Adelie │ 3.72 │ 0.27 │ 7.4 │ 297.5 │ 1.927462 │ 1.060451 │ 6.310485 │ 372.015905 │
│ Adelie │ -0.78 │ -0.63 │ 1.4 │ 497.5 │ 1.927462 │ 1.060451 │ 6.310485 │ 372.015905 │
│ Adelie │ 0.72 │ -0.43 │ -6.6 │ -677.5 │ 1.927462 │ 1.060451 │ 6.310485 │ 372.015905 │
│ Adelie │ 1.92 │ 1.77 │ 2.4 │ 47.5 │ 1.927462 │ 1.060451 │ 6.310485 │ 372.015905 │
│ … │ … │ … │ … │ … │ … │ … │ … │ … │
└─────────┴─────────────────────────┴────────────────────────┴────────────────────────────┴──────────────────────┴────────────────────┴───────────────────┴───────────────────────┴─────────────────┘
Filtering Selectors
You can also express complex filters more concisely.
Let’s say we only want to keep rows where all the bill size z-score related columns’ absolute values are greater than 2.
t.drop("year" ).group_by("species" ).mutate(
s.across(s.numeric(), dict (zscore= (_ - _.mean()) / _.std()))
).filter (s.if_all(s.startswith("bill" ) & s.endswith("_zscore" ), _.abs () > 2 ))
┏━━━━━━━━━┳━━━━━━━━━━━┳━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━┓
┃ species ┃ island ┃ bill_length_mm ┃ bill_depth_mm ┃ flipper_length_mm ┃ body_mass_g ┃ sex ┃ bill_length_mm_zscore ┃ bill_depth_mm_zscore ┃ flipper_length_mm_zscore ┃ body_mass_g_zscore ┃
┡━━━━━━━━━╇━━━━━━━━━━━╇━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━┩
│ string │ string │ float64 │ float64 │ int64 │ int64 │ string │ float64 │ float64 │ float64 │ float64 │
├─────────┼───────────┼────────────────┼───────────────┼───────────────────┼─────────────┼────────┼───────────────────────┼──────────────────────┼──────────────────────────┼────────────────────┤
│ Gentoo │ Biscoe │ 59.6 │ 17.0 │ 230 │ 6050 │ male │ 3.924621 │ 2.056508 │ 1.975799 │ 1.932062 │
│ Gentoo │ Biscoe │ 55.9 │ 17.0 │ 228 │ 5600 │ male │ 2.724046 │ 2.056508 │ 1.667394 │ 1.039411 │
│ Adelie │ Torgersen │ 46.0 │ 21.5 │ 194 │ 4200 │ male │ 2.706539 │ 2.592071 │ 0.618760 │ 1.088911 │
│ Adelie │ Dream │ 32.1 │ 15.5 │ 188 │ 3050 │ female │ -2.512345 │ -2.339505 │ -0.298747 │ -1.418906 │
└─────────┴───────────┴────────────────┴───────────────┴───────────────────┴─────────────┴────────┴───────────────────────┴──────────────────────┴──────────────────────────┴────────────────────┘
Bonus: Generated SQL
The SQL for that last expression is pretty gnarly:
ibis.to_sql(
t.drop("year" )
.group_by("species" )
.mutate(s.across(s.numeric(), dict (zscore= (_ - _.mean()) / _.std())))
.filter (s.if_all(s.startswith("bill" ) & s.endswith("_zscore" ), _.abs () > 2 ))
)
SELECT
*
FROM (
SELECT
"t1" ."species" ,
"t1" ."island" ,
"t1" ."bill_length_mm" ,
"t1" ."bill_depth_mm" ,
"t1" ."flipper_length_mm" ,
"t1" ."body_mass_g" ,
"t1" ."sex" ,
(
"t1" ."bill_length_mm" - AVG ("t1" ."bill_length_mm" ) OVER (PARTITION BY "t1" ."species" ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING )
) / STDDEV_SAMP ("t1" ."bill_length_mm" ) OVER (PARTITION BY "t1" ."species" ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING ) AS "bill_length_mm_zscore" ,
(
"t1" ."bill_depth_mm" - AVG ("t1" ."bill_depth_mm" ) OVER (PARTITION BY "t1" ."species" ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING )
) / STDDEV_SAMP ("t1" ."bill_depth_mm" ) OVER (PARTITION BY "t1" ."species" ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING ) AS "bill_depth_mm_zscore" ,
(
"t1" ."flipper_length_mm" - AVG ("t1" ."flipper_length_mm" ) OVER (PARTITION BY "t1" ."species" ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING )
) / STDDEV_SAMP ("t1" ."flipper_length_mm" ) OVER (PARTITION BY "t1" ."species" ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING ) AS "flipper_length_mm_zscore" ,
(
"t1" ."body_mass_g" - AVG ("t1" ."body_mass_g" ) OVER (PARTITION BY "t1" ."species" ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING )
) / STDDEV_SAMP ("t1" ."body_mass_g" ) OVER (PARTITION BY "t1" ."species" ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING ) AS "body_mass_g_zscore"
FROM (
SELECT
"t0" .*
EXCLUDE ("year" )
FROM "penguins" AS "t0"
) AS "t1"
) AS "t2"
WHERE
ABS ("t2" ."bill_length_mm_zscore" ) > 2 AND ABS ("t2" ."bill_depth_mm_zscore" ) > 2
Good thing you didn’t have to write that by hand!
Summary
This blog post illustrates the ability to apply computations to many columns at once and the power of ibis as a composable, expressive library for analytics.
Back to top