cols = { c: penguins[c] - penguins[c].mean()for c in penguins.columnsif penguins[c].type().is_numeric() and c !="year"}expr = penguins.group_by("species").mutate(**cols).head(5)expr
cols = { c: penguins[c] - penguins[c].mean()for c in penguins.columnsif penguins[c].type().is_numeric() and c !="year"}expr = penguins.group_by("species").mutate(**cols).head(5)
ibis.to_sql(expr)
SELECT"t0"."species","t0"."island","t0"."bill_length_mm"-AVG("t0"."bill_length_mm") OVER (PARTITIONBY"t0"."species"ROWSBETWEENUNBOUNDEDPRECEDINGANDUNBOUNDEDFOLLOWING) AS"bill_length_mm","t0"."bill_depth_mm"-AVG("t0"."bill_depth_mm") OVER (PARTITIONBY"t0"."species"ROWSBETWEENUNBOUNDEDPRECEDINGANDUNBOUNDEDFOLLOWING) AS"bill_depth_mm","t0"."flipper_length_mm"-AVG("t0"."flipper_length_mm") OVER (PARTITIONBY"t0"."species"ROWSBETWEENUNBOUNDEDPRECEDINGANDUNBOUNDEDFOLLOWING) AS"flipper_length_mm","t0"."body_mass_g"-AVG("t0"."body_mass_g") OVER (PARTITIONBY"t0"."species"ROWSBETWEENUNBOUNDEDPRECEDINGANDUNBOUNDEDFOLLOWING) AS"body_mass_g","t0"."sex","t0"."year"FROM"penguins"AS"t0"LIMIT5
…in 2015, I started the Ibis project…to create a pandas-friendly deferred expression system for static analysis and compilation [of] these types of [query planned, multicore execution] operations. Since an efficient multithreaded in-memory engine for pandas was not available when I started Ibis, I instead focused on building compilers for SQL engines (Impala, PostgreSQL, SQLite), similar to the R dplyr package. Phillip Cloud from the pandas core team has been actively working on Ibis with me for quite a long time.